
University Degree in Computer Science and Engineering
Academic Year 2020-2021

Bachelor Thesis

“GitOps continuous deployment and
management tool for Kubernetes-based

distributed systems”

Pablo Gómez-Caldito Gómez

Advisor: Francisco Javier García Blas
Leganés, September 2021

This work is licensed under Creative Commons Attribution – Non Commercial – Non
Derivatives

Agradecimientos

Primero de todo a mi familia, por darme siempre el apoyo y cariño que me ha permitido com-

pletar mis estudios. Especialmente a mi padre por ayudarme a entender las asignaturas que se

me atascaban, a mi madre por todo lo que hace por mí.

También a mis amigos, por todos los buenos momentos que comparto con vosotros y estar

siempre ahí cuando se os necesita. Sois muy valiosos para mí.

Por otro lado, a mis compañeros y amigos de la universidad tanto del campus de Col-

menarejo como de Leganés. Especialmente a Adri, Ramón y Raúl, por ser mis compañeros de

batalla en tantas prácticas, y los ratos en las cafeterías y discord.

También a mis compañeros de equipo en idealista por todo lo que me habéis enseñado y he

aprendido trabajando a vuestro lado. Esos conocimientos me han ayudado mucho para tener

una muy buena base para realizar este trabajo.

Finalmente a Javier, mi tutor. Por guiarme durante estos meses de trabajo semana a semana

de forma intachable. Ojalá muchos más profesores tuvieran tu paciencia y buen trato hacia sus

alumnos.

A todos, y a los que faltan por poner, tenéis mi más profundo agradecimiento.

GitOps continuous deployment and management tool

for Kubernetes-based distributed systems

Bachelor Thesis

Pablo Gómez-Caldito Gómez

Abstract

The enormous and increasing amount of internet users has produced bigger and fluctuating

workloads in computing infrastructures, and greater competition among software products over

the last years. This has led to companies needing far more scalable services and faster delivery

of new features. Responding to this demands appeared the DevOps philosophy and more

modern infrastructures.

Kubernetes is a piece of software to manage container-based infrastructures and CI/CD is

a software development practice to fasten the SDLC. Both are widely used by organizations

implementing DevOps in their engineering teams. GitOps is way of performing Continuous

Deployment which fits really well with Kubernetes. There are some projects that enable teams

to adopt GitOps in Kubernetes clusters but are too complex for some use cases.

This Bachelor Thesis presents a GitOps tool for Kubernetes-based clusters focused on sim-

plicity, following the Unix philosophy. This tool was designed from the ground up to run inside

this clusters to ease its operations and has a modular design for better extensibility. It also uses

a feature from Kubernetes called Server-Side Apply. The mentioned feature allows to have a

very small deployment module compared to other alternatives by relying a lot of complex logic

on the server side. Furthermore, the project is free and open-source so anyone benefit from it

and the improvements made by the people who use it regularly.

Keywords: GitOps, Git, Kubernetes, Continuous Deployment, Containers, DevOps Philos-

ophy, Free and Open-Source Software.

v

Herramienta de Despliegue Continuo GitOps y gestión para sistemas

distribuidos basados en Kubernetes

Trabajo de Fin de Grado

Pablo Gómez-Caldito Gómez

Resumen

El enorme y creciente número de usuarios de internet produce cargas de trabajo más

grandes y variables en infrastructuras de computación, y más competición entre productos

basados en software en los últimos años. Esto ha llevado a que las compañias necesiten servi-

cios mucho más escalables y una entrega mas rápida de nuevas funcionalidades. Respondiendo

a estas necesidades ha aparecido la filosofía DevOps e infrastructuras más modernas.

Kubernetes es un software para gestionar infrastructuras basadas en contenedores y CI/CD

es una practica para acelerar el Ciclo de Vida del Desarrollo de Software. Ambos son usados

por empresas implementando DevOps en sus equipos de tecnología. GitOps es una manera de

hacer Despliegue Continuo que encaja muy bien con Kubernetes. Hay algunos proyectos que

permiten a los equipos adoptar GitOps enfocadas a clústeres de Kubernetes pero son demasiado

complejas para algunos casos de uso.

Este Trabajo de Fin de Grado presenta una herramienta de GitOps para clústeres basados

en Kubernetes enfocada en la simplicidad, siguiendo la filosofía Unix. Esta herramienta fue

diseñada desde el inicio para ser ejecutada dentro de los clústers para facilitar sus operaciones

y tiene un diseño modular para una mejor extensibilidad. También usa una funcionalidad

de Kubernetes llamada Server-Side Apply. Dicha funcionalidad permite tener un módulo de

despliegue mucho más sencillo que el resto de alternativas al delegar mucha lógica compleja

en el lado del servidor. Además, el proyecto es Software Libre y de Código Abierto para que

cualquiera se pueda beneficiar de él y las mejoras llevadas a cabo por los usuarios.

Palabras clave: GitOps, Git, Kubernetes, Despliegue Continuo, Contenedores, Filosofía De-

vOps, Software Libre y de Código Abierto.

vii

Contents

Agradecimientos iii

Abstract v

Resumen vii

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Document’s Structure . 2

2 State of the Art 5

2.1 OS-level virtualization and containers . 5

2.1.1 Containers . 6

2.2 Kubernetes . 6

2.3 Git . 7

2.4 Continuous deployment, GitOps and the DevOps philosophy 8

ix

x GitOps continuous deployment and management tool for Kubernetes-based DS

2.4.1 Continuous deployment . 8

2.4.2 GitOps . 8

2.4.3 DevOps philosophy . 9

3 System Overview 11

3.1 Background . 11

3.2 Description . 12

4 Analysis 15

4.1 Requirement Analysis . 15

4.1.1 Functional Requirements . 16

4.1.2 Non-functional Requirements . 20

4.2 Licenses . 24

4.2.1 Tool license . 24

4.2.2 Licenses of used projects . 24

5 Design 27

5.1 Daemon process . 27

5.2 Module Description . 28

5.2.1 Parameter reading module . 28

5.2.2 Git module . 28

5.2.3 Build configuration processing module . 29

5.2.4 Deployment module . 31

5.3 Integration . 31

6 Validation 33

6.1 External Tools . 33

6.2 Testing Methodology . 33

6.3 Test Performed . 34

7 Use case 41

7.1 Installation . 41

7.2 Repository contents . 42

7.2.1 Build Configuration Files Convergence . 42

7.2.2 Containing just GitOps configuration . 42

CONTENTS xi

7.2.3 Containing Code and GitOps configuration 43

7.3 Deployment approaches . 43

7.3.1 Namespace per branch . 43

7.3.2 Production and staging . 45

8 Project Plan 47

8.1 Management . 47

8.1.1 Methodology . 47

8.1.2 Planning . 48

8.2 Budget . 53

8.2.1 Human Resources costs . 54

8.2.2 Equipment costs . 54

8.2.3 Software costs . 54

8.2.4 Consumables costs . 55

8.2.5 Other costs . 55

8.2.6 Total budget . 56

8.3 Socioeconomic Impact . 56

9 Conclusions and Future Work 59

9.1 Objectives Achievement . 59

9.2 Future Work . 60

Bibliography 63

List of Figures

2-1 K8s components. 7

2-2 Gitflow branching strategy. 8

3-1 System overview diagram. 13

5-1 Integration diagram. 32

6-1 [Testing pyramid]Testing pyramid [23] . 34

7-1 Weaveworks GitOps pipeline. 43

8-1 Prototype model phases. 49

8-2 Implementation phases. 49

8-3 Project’s initial estimation Gantt diagram. 51

8-4 Project’s final Gantt diagram. 52

xiii

List of Tables

4.1 Template for requirement analysis. 15

4.2 FR-01 . 16

4.3 FR-02 . 17

4.4 FR-03 . 17

4.5 FR-04 . 17

4.6 FR-05 . 18

4.7 FR-06 . 18

4.8 FR-07 . 18

4.9 FR-08 . 19

4.10 FR-09 . 19

4.11 FR-10 . 19

4.12 NFR-01 . 20

4.13 NFR-02 . 20

4.14 NFR-03 . 20

4.15 NFR-04 . 21

4.16 NFR-05 . 21

4.17 NFR-06 . 21

4.18 NFR-07 . 22

4.19 NFR-08 . 22

4.20 NFR-09 . 22

xv

xvi
GitOps continuous deployment and management tool for Kubernetes-based distributed

systems

4.21 NFR-10 . 23

4.22 NFR-11 . 23

4.23 NFR-12 . 23

4.24 NFR-13 . 23

4.25 NFR-14 . 24

6.1 Validation test template. 34

6.2 T-01 . 35

6.3 T-02 . 35

6.4 T-03 . 35

6.5 T-04 . 35

6.6 T-05 . 36

6.7 T-06 . 36

6.8 T-07 . 36

6.9 T-08 . 36

6.10 T-09 . 36

6.11 T-10 . 37

6.12 T-11 . 37

6.13 T-12 . 37

6.14 T-13 . 37

6.15 Traceability Matrix Tests - Functional Requirements 38

6.16 Traceability Matrix Tests - Non-Functional Requirements 39

8.1 Iteration Planning. 53

8.2 Project’s budget summary. 53

8.3 Human Resources costs . 54

8.4 Equipment costs. 54

8.5 Software costs. 55

8.6 Consumable costs . 55

8.7 Other costs. 56

8.8 Project Budget. 56

CHAPTER 1

Introduction

This first chapter gives a presentation of the developed Bachelor Thesis. It explains the motiva-

tion resulting in this project, the main objectives proposed to achieve, and lastly the document’s

structure.

1.1 Motivation

The enormous and increasing amount of internet users has produced bigger and fluctuating

workloads in computing infrastructures, and greater competition among software products

over the last years [1]. This has led to companies needing far more scalable services and faster

delivery of new features. Responding to this demands appeared the DevOps philosophy [2]

and more modern infrastructures.

Kubernetes [3] is a piece of software to manage container-based [4] infrastructures and

CI/CD [5] is a software development practice to fasten the SDLC [6]. Both are widely used by

organizations implementing DevOps in their engineering teams. GitOps [7] is way of perform-

ing Continuous Deployment [5] which fits really well with Kubernetes. There are some projects

that enable teams to adopt GitOps in Kubernetes clusters but are too complex for some use

cases.

This work presents three main contributions. The first one is a GitOps tool for Kubernetes-

1

2 GitOps continuous deployment and management tool for Kubernetes-based DS

based clusters focused on simplicity. Furthermore, presents an modular and extensible design

to facilitate future updates. The second is a much simpler deployment module compared to

other alternatives by relying a lot of complex logic on the server side. To achieve it uses a new

feature from Kubernetes called Server-Side Apply. The third one is the community aspect of

this tool. The project is free and open-source so anyone benefit from it and the improvements

made by the people who use it regularly.

This project aims to build a tool that does one thing well and in a simple way, following

the Unix philosophy [8]. In this project, we target at GitOps, in terms of continuous

deployment based on information stored in Git repositories.

1.2 Objectives

The fundamental objectives sought with this project are associated to the build and enhance-

ment of the said tool, and can be summarized in three,

Obtain a simple yet useful GitOps tool.

The resulting program is meant to be very simple but powerful nonetheless. It will only

have a handful of key features which add plenty of value.

Tool working inside Kubernetes cluster.

Successfully have the tool running inside a Kubernetes-based cluster. This simplifies service

operations and getting the credentials to communicate with the Kubernetes API.

Make the project free and open-source.

The project will be open-source so other people can benefit from it and contribute. It is a win-

win situation for everyone and can also add revenue by selling support to other development

teams who use it.

1.3 Document’s Structure

This document is composed by 9 different chapters, each one providing insight on it from a

different angle to give a complete understanding of the resulting work.

Chapter 1. Introduction.

CHAPTER 1. INTRODUCTION 3

Shows the reasons for developing the project, the objectives proposed to reach and how the

document is structured.

Chapter 2. State of the Art.

Gives the reader an introduction on the developments of the field in which this project

belongs. Also explains some technologies that are going to be used.

Chapter 3. System Overview

Provides a general overview of the tool. Explaining its background and a first high level

description of it.

Chapter 4. Analysis

Serves to expose the found functional and non-functional requirements of the GitOps tool.

Also explains the licenses of this tool and other projects used to build it.

Chapter 5. Design

Presents a closer look into the internals of the application and how the modules interact

between them to get the desired behavior.

Chapter 6. Validation.

Depicts an explanation of the external tools, the testing methodology and the different tests

performed.

Chapter 7. Use case.

Provides some insights on how a development team could use the resulting program .

Chapter 8. Project Plan.

Delivers an overview of the software development methodology used and planning done.

Also a breakdown of the costs into different categories.

Chapter 9. Conclusions and future work.

Includes the culmination of this document and further improvements on the project.

CHAPTER 2

State of the Art

This chapter will provide an overview on the technologies and principles used to develop this

project. In order to do this some websites, publications, and videos will be analyzed.

In the first two sections I cover a review of Kubernetes and the virtualization methods

that uses. In the third one basic concepts of the Git VCS are explained because this project

relies heavily on it. Lastly, the principles of continuous deployment, GitOps and the DevOps

philosophy are exposed, which this project helps to implement.

2.1 OS-level virtualization and containers

OS-level virtualization enables to create isolated user-spaces that release on the host’s kernel.

From the point of view of a program running inside the guest OS, it can only see its contents

and devices assigned to it, whereas the host can see everything on it.

These instances are invoked in different ways depending on their features and the Unix-like

operating system they are used in. For instance, Linux users use Containers, FreeBSD uses

Jails and Solaris ones Zones. The most basic way of OS-level virtualization is chroot, which is

available in all Unix-like operating systems, only changing the apparent root directory for the

current running process and its children. [9]

5

6 GitOps continuous deployment and management tool for Kubernetes-based DS

2.1.1 Containers

Containers are the one of most used solutions of OS-level virtualization in Linux. There are sev-

eral implementations available like Docker, Podman, LXC and LXD. To accomplish the desired

isolation, they rely on the Linux kernel, specially in they use cgroups and Linux namespaces.

LXC and LXD provide a containerized OS, while Docker and Podman are used for con-

tainerizing single applications. Also containers regardless its type can be, and normally are,

deployed inside virtual machines.

• Pros: Less overhead compared to traditional VMs. By using the same kernel as the guest

OS they are the same as a regular program in terms of performance but with more isola-

tion. Also they have faster boot time, specially when containerizing single applications.

[10]

• Cons: Storage persistence and snapshots. Traditional virtual machines have more mech-

anisms to keep the machine running and the data in it safe, like moving a VM from one

host to another and taking snapshots. Containers are more ephemeral. This by itself is a

con but if the containers are made stateless they can be really useful for deployments that

scale horizontally.

2.2 Kubernetes

Kubernetes, also known as K8s, is a portable, extensible, open-source platform for managing

containerized workloads and services, that facilitates both declarative configuration and au-

tomation [3]. With a system like this containers can be used in production environments.

Kubernetes does provide with [11]:

• Service discovery and load balancing: It provides an live inventory of the owned re-

sources and manages the name resolution (DNS).

• Storage orchestration: It can mount multiple storage systems.

• Automated rollouts and rollbacks: The desired state of the system is specified in a declar-

ative way and can be configured to change according to the load. It is able to do rollouts

of new versions and rollbacks in a way to prevent any downtime.

• Automatic bin packing: Containers can be assigned RAM and CPU limits.

CHAPTER 2. STATE OF THE ART 7

• Self-healing: Health checks can be defined to know when to replace containers. Also

readiness checks are provided to not expose them to the client until they are ready to

serve.

• Secret and configuration management: Sensitive information like container registry keys,

SSH keys, and passwords can be stored and managed within k8s.

Kubernetes components can be seen in Figure 2-1.

Figure 2-1: K8s Components [12].

2.3 Git

Git is a free and open-source distributed VCS (Version Control System) developed by Linus

Torvalds in 2005 for development of the Linux kernel. It is normally used by programmers to

develop source code in a collaborative way [13].

In order to save the current state of the code repository, a commit is made, in Git a commit

is not stored as the difference with the previous version, but as an snapshot. Also to save

space unaltered files are not stored again. Also it is distributed unlike other VCS like Apache

Subversion, and developers perform operations against their local copies and not a central

server. Those local copies are syncronized to and from a server called the origin when needed.

It also supports branching, as a nearly every VCS, this means that lines of development can be

split to not conflict with each other and merge them when it is appropriate. There are many

8 GitOps continuous deployment and management tool for Kubernetes-based DS

branching strategies to have an order when developing, Gitflow is a popular one and can be

seen in Figure 2-2. When using Git servers like GitHub or Bitbucket developers who want to

merge their branch into another can open something called a pull request to show the difference

between them to other developers who will then approve it or not.

Figure 2-2: Gitflow branching strategy [14].

2.4 Continuous deployment, GitOps and the DevOps philosophy

2.4.1 Continuous deployment

Continuous deployment is the practice to deploy new versions of the code automatically. It

aims to increase de frequency of deployments and remove manual error prone operations. This

reduces the waste of resources in processes that involve many teams and eliminates the fear

from releasing new features. [5]

When using continuous deployment, and any other operations model, rollback mechanisms

should be present in case there are problems.

2.4.2 GitOps

GitOps is a model defined by WeaveWorks to manage continuous deployment taking advan-

tage of declarative infrastructure defined as code stored in Git. What is reflected in the repos-

itory will be rolled to the servers automatically. Also each branch in the Git repository can be

CHAPTER 2. STATE OF THE ART 9

matched with an environment. It is normally used in Kubernetes environments because it fits

well with the declarative declaration of their state, but is not limited to them [15].

GitOps principles: [16]

• The entire system described declaratively,

• The canonical desired system state versioned in Git,

• Approved changes that can be automatically applied to the system, and

• Software agents to ensure correctness and alert on divergence.

Currently, GitOps does not need to use Git in order to work, it can use other VCSs but it was

called in that manner because Git is the most used one.

2.4.3 DevOps philosophy

GitOps [2] helps to implement the DevOps philosophy in companies, which focuses on com-

bining development and operations to reduce friction and fasten time to market. In this way

developers can be the owners for their features across the whole SDLC (Software Development

Life Cycle).

CHAPTER 3

System Overview

This chapter introduces the tool developed in this project, namely Soup and the background

that has led to it. Later, Section 3.2 illustrates the functionality, how it works to accomplish it, a

brief showcase of the modules which compose the program, and its operational environment.

3.1 Background

As descused in Chapter 2, GitOps is a model defined by WeaveWorks to manage continuous de-

ployment, taking advantage of declarative infrastructure defined as code stored in Git. GitOps

is usually employed in Kubernetes-based clusters and there are some options such as ArgoCD,

Flux and Jenkins X. All these projects are quite complex and often cover too much. For instance,

Jenkins X also does continuous integration and testing, which is a GitOps anti-pattern. [17]

This project aims to build a tool that does one thing well and in a simple way, follow-

ing the Unix philosophy [8]. In this project, we target at GitOps, in terms of continuous

deployment based on information stored in Git repositories.

So, for building this tool we will focus on the Git repository and the Kubernetes API to cope

this problem.

11

12 GitOps continuous deployment and management tool for Kubernetes-based DS

3.2 Description

The solution developed for this project is called Soup and is available as free and open-source

software in GitHub1. Soup is developed in Go programming language and contains everything

needed to build it and install it in a cluster. In this way, the program is more useful to the

community and can be improved by other contributors.

This solution enables the automatical deployment by using k8s manifests stored in Git repos-

itories to a designated k8s-based cluster. Also, it can deploy each branch in an specified names-

pace. Kubernetes namespaces are used to separate resources in different isolated environments.

Thus, names of resources need to be unique within a namespace, but not across namespaces.

The system is divided in three submodules, which will be detailed with much more detail

in the Design Chapter:

• Git module: It is in charge of cloning the repository, retrieving the existing branches and

checking out to them.

• Branch configuration processing: It retrieves the configuration file of the given branch,

parses it and applies some logic to know what needs to be done. This configuration is

placed in yaml files called .soup.yml.

• Deployment module: This module is in charge of making the actual changes over the

Kubernetes cluster. It uses the Go Kubernetes API client in order to do it.

In order to simplify the deployment, a Kubernetes API functionality named “Server-Side

Apply” is used. This enables kubernetes clients to send the manifests for it to being applied in

the server side, most of the logic does not need to be in the client. Because of this the complexity

of the deployment module can be low while providing everything needed.

Also the program is designed to run containerized in a k8s cluster. The diagram in Figure

3-1 provides an overview of how the system interacts both with Git and Kubernetes. It is

compiled and the resulting binary is set to be executed with the container starting command.

It is designed to run within the cluster because it takes the configuration needed to do the

deployments from it. However, “Soup” could also run outside the cluster by adding some

functionality to be able to choose whether the cluster configuration is retrieved from the cluster

or contained in a file.

1https://github.com/caldito/soup.git

https://github.com/caldito/soup.git

CHAPTER 3. SYSTEM OVERVIEW 13

Figure 3-1: System overview diagram.

CHAPTER 4

Analysis

This chapter depicts the analysis followed prior to the construction of this project. Includes the

requirement analysis and licenses regarding this work and other tools used to build it.

4.1 Requirement Analysis

This section is dedicated to gather all the requirements needed for the desired functioning of the

tool. They will define its behavior by determining its features and restrictions. The requirement

analysis will be performed using the template table below.

ID Name

Importance Preference Flexibility

Testability Origin Dependencies

Description

Achievement

criteria

Table 4.1: Template for requirement analysis.

• ID: Identifier corresponding to the requirement. Its format is <TYPE>R-XX, where <TYPE>

15

16 GitOps continuous deployment and management tool for Kubernetes-based DS

can be F for functional or NF for non-functional and XX for a two digit number.

• Name: Name given to the requirement.

• Importance: Degree of importance, it can take the values Fundamental, Highly Useful

or Useful.

• Preference: Determines the order in which this requirements should be fulfilled. It can

be High, Medium or Low.

• Flexibility: Determines if a requirement can be changed along the project’s development

(Yes) or not (No).

• Testability: Determines how easy can be tested, its possible values are High, Medium or

Low.

• Origin: Stands for the origin of the requirement, its values can be Client or Engineer.

• Dependencies: Dependencies on other requirements.

• Description: Short explanation of the requirement.

• Achievement criteria: Test case that must be passed to determine the requirement is

achieved.

Requirements can be functional or non-functional. Functional ones define what the system

should do and the non-functional give details about how it will do those functions.

4.1.1 Functional Requirements

ID FR-01 Name Repository input parameter

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies

Description The application must receive an input parameter called “repo” to

choose the repository to perform the deployment from.

Achievement

criteria

Performs the operations using the indicated repository in the “repo”

parameter.

Table 4.2: FR-01

CHAPTER 4. 17

ID FR-02 Name Interval input parameter

Importance Useful Preference Medium Flexibility No

Testability High Origin Client Dependencies

Description The application must accept an input parameter called “interval” the

amount of seconds that sleeps between executions. This should be an

optional parameter.

Achievement

criteria

The program sleeps the received value in the the “interval” parameter

in seconds.

Table 4.3: FR-02

ID FR-03 Name Default interval value

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies FR-02

Description The default interval between executions will be 120 seconds.

Achievement

criteria

The program will sleep 120 seconds when the "interval" parameter is

not provided to the program .

Table 4.4: FR-03

ID FR-04 Name Configuration file in repository

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies

Description The program will check all the branches in the Git repository and read a

configuration file called ".soup.yml" to know where and what to deploy.

This file stores data in yaml format.

Achievement

criteria

The program uses the ".soup.yml" to know what to do when iterating

over the different branches.

Table 4.5: FR-04

18 GitOps continuous deployment and management tool for Kubernetes-based DS

ID FR-05 Name Nonexistent configuration file in repository

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies FR-02

Description If in a branch of the repository does not exist the ".soup.yml" file the

program will not perform any operations in that branch.

Achievement

criteria

The program runs correctly when using a repo which has a branch

without ".soup.yml", it just prints a warning.

Table 4.6: FR-05

ID FR-06 Name Namespaces in configuration file

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies FR-04

Description The ".soup.yml has an array called "namespaces" which has objects with

the fields "namespace" and "branch". This is to associate Git branches

and k8s namespaces in which to deploy.

Achievement

criteria

The program deploys to the namespace that matches each branch

Table 4.7: FR-06

ID FR-07 Name k8s manifests in configuration file

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies FR-04

Description The ".soup.yml" has an array called "manifests" which indicates with

manifests to deploy to the k8s cluster.

Achievement

criteria

The program applies the specified k8s manifests.

Table 4.8: FR-07

CHAPTER 4. 19

ID FR-08 Name as-branch namespace in configuration file

Importance Highly Useful Preference High Flexibility No

Testability High Origin Client Dependencies FR-04

Description If the name of the "namespace" field is "as-branch" it deploys to a

namespace called the same name as the "branch" field, changing names-

pace invalid characters to dashes.

Achievement

criteria

The program creates a new namespace called as the branch and deploys

to it when "as-branch" is the namespace assigned to that branch.

Table 4.9: FR-08

ID FR-09 Name branch selected with regular expression

Importance Highly Useful Preference High Flexibility No

Testability High Origin Client Dependencies FR-04

Description The ".soup.yml" can contain regular expressions to match branch

names.

Achievement

criteria

The program works as expected using regular expressions with the

branch names.

Table 4.10: FR-09

ID FR-10 Name Execution in kubernetes cluster

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies

Description The program is designed to be run as containerized and in a Kubernetes

cluster.

Achievement

criteria

The program runs in a kubernetes cluster and it takes the credentials

needed to deploy from it.

Table 4.11: FR-10

20 GitOps continuous deployment and management tool for Kubernetes-based DS

4.1.2 Non-functional Requirements

ID NFR-01 Name Linux OS

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies

Description The system must run on Linux.

Achievement

criteria

The result and behaviour of the execution is as expected under Linux.

Table 4.12: NFR-01

ID NFR-02 Name install.yml

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies

Description A k8s manifest should be provided that eploys the containerized pro-

gram to the cluster.

Achievement

criteria

The install.yml file deploys the containerized program to the cluster as

expected.

Table 4.13: NFR-02

ID NFR-03 Name Make

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies

Description The application must have a the Makefile used for multiple purposes.

Achievement

criteria

There is a file named Makefile with multiple targets.

Table 4.14: NFR-03

CHAPTER 4. 21

ID NFR-04 Name Make compilation

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies NFR-03

Description The Makefile must have a target for building the program.

Achievement

criteria

The Makefile has a target that builds the application as expected.

Table 4.15: NFR-04

ID NFR-05 Name Make docker

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies NFR-03

Description The Makefile must have a target for building the container with docker.

Achievement

criteria

The Makefile has a target that builds the container with docker as ex-

pected.

Table 4.16: NFR-05

ID NFR-06 Name Make podman

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies NFR-03

Description The Makefile must have a target for building the container with pod-

man.

Achievement

criteria

The Makefile has a target that builds the container with docker as ex-

pected.

Table 4.17: NFR-06

22 GitOps continuous deployment and management tool for Kubernetes-based DS

ID NFR-07 Name Make dependencies

Importance Useful Preference High Flexibility No

Testability High Origin Client Dependencies NFR-03

Description The Makefile must have a target for managing the external dependen-

cies.

Achievement

criteria

The Makefile has a target that reflects the needed dependencies in the

go.mod and go.sum files.

Table 4.18: NFR-07

ID NFR-08 Name Make format

Importance Useful Preference High Flexibility No

Testability High Origin Client Dependencies NFR-03

Description The Makefile must have a target for formatting the source code accord-

ing to Go standards.

Achievement

criteria

The Makefile has a target that formats the source code.

Table 4.19: NFR-08

ID NFR-09 Name Logging

Importance Fundamental Preference Medium Flexibility No

Testability High Origin Client Dependencies

Description The application must log information about what happens in the pro-

gram.

Achievement

criteria

The log gives an understanding on what happens in the program.

Table 4.20: NFR-09

CHAPTER 4. 23

ID NFR-10 Name Error Information

Importance Fundamental Preference Medium Flexibility No

Testability High Origin Client Dependencies

Description The application must log errors and fatal errors.

Achievement

criteria

A failed execution shows the error.

Table 4.21: NFR-10

ID NFR-11 Name Go version

Importance Highly Useful Preference High Flexibility No

Testability High Origin Client Dependencies

Description The version of Go that must be used in the application is 1.16.

Achievement

criteria

The result of the execution is the expected when using using Go 1.16

for compilation.

Table 4.22: NFR-11

ID NFR-12 Name Kubernetes version

Importance Fundamental Preference High Flexibility No

Testability High Origin Client Dependencies

Description The application must work as expected when deployed in kubernetes

v1.20 and higher.

Achievement

criteria

The execution of the application works as expected when deployed in

kubernetes v1.20 and higher.

Table 4.23: NFR-12

ID NFR-13 Name K8s Go API for deploy function

Importance Fundamental Preference Medium Flexibility No

Testability High Origin Client Dependencies

Description The system should use the k8s Go API to make the deployments.

Achievement

criteria

The system performs the deployments by using the k8s Go API.

Table 4.24: NFR-13

24 GitOps continuous deployment and management tool for Kubernetes-based DS

ID NFR-14 Name Deploy function as a library

Importance Useful Preference Medium Flexibility No

Testability High Origin Client Dependencies

Description The system should use the deploy function as a library and it could be

used in other projects.

Achievement

criteria

The deploy function in in the pkg/ directory so that can be used in other

projects when this one is open-sourced.

Table 4.25: NFR-14

4.2 Licenses

This section shows the legal aspects concerning this project. Starting with the license used

for the tool and then the licenses from the principal dependencies and tools used during the

development of this project.

4.2.1 Tool license

The tool is publicly available1 and licensed under the Apache License 2.02. It is a permissive

license whose main conditions require preservation of copyright and license notices. Contribu-

tors provide an express grant of patent rights. Licensed works, modifications, and larger works

may be distributed under different terms and without source code. [18]

4.2.2 Licenses of used projects

The projects used during the development of this work are licensed in the following way:

• Go programming language uses a custom permissive license which can be found in its

repository 3.

• Kubernetes Go client uses the Apache License 2.0 which can be seen in its repository4.

• Go yaml is under the Apache License 2.0, its details can be seen in its repository5.

• go-git uses the Apache License 2.0, its details can be seen in its repository6.
1https://github.com/caldito/soup.git
2https://github.com/caldito/soup/blob/main/LICENSE
3https://github.com/golang/go/blob/master/LICENSE
4https://github.com/kubernetes/client-go/blob/master/LICENSE
5https://github.com/go-yaml/yaml/blob/v2/LICENSE
6https://github.com/go-git/go-git

https://github.com/caldito/soup.git
https://github.com/caldito/soup/blob/main/LICENSE
https://github.com/golang/go/blob/master/LICENSE
https://github.com/kubernetes/client-go/blob/master/LICENSE
https://github.com/go-yaml/yaml/blob/v2/LICENSE
https://github.com/go-git/go-git

CHAPTER 4. 25

• GNU Make uses the GNU General Public License v3, its details can be consulted on its

webpage7.

• Docker Community Edition uses the Apache License 2.0, its details can be seen in its

repository8.

• Podman uses the Apache License 2.0, its details can be seen in its repository9.

7https://www.gnu.org/licenses/gpl-3.0.html
8https://github.com/docker/docker-ce/blob/master/LICENSE
9https://github.com/containers/podman/blob/main/LICENSE

https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/docker/docker-ce/blob/master/LICENSE
https://github.com/containers/podman/blob/main/LICENSE

CHAPTER 5

Design

This chapter shows a more detailed explanation on the internals of the tool built. First it

explains how this tool is designed to run as a daemon process, then a explicit description of

each module and finally how they integrate all together to obtain the desired system.

5.1 Daemon process

This application is designed to run as a daemon process. This means that executed one time

and is designed to run in the background forever or until it is stopped.

It reads the parameters at launch and then, it executes the rest of the program in a loop. It

does sleep a certain amount of time after finishing an iteration.

init() // reads parameters

while(1) { // this loop is performed by the main() function, which is run after init()

run()

sleep(interval)

}

Listing 5.1: Program daemon structure pseudocode.

27

28 GitOps continuous deployment and management tool for Kubernetes-based DS

5.2 Module Description

The system is composed by modules to facilitate extensibility and maintainability in the future.

This section provides an explanation on the four different modules found in this tool.

5.2.1 Parameter reading module

First of all the tool needs to receive some parameters in order to work. This module is in charge

of receiving them. There are two of them:

• Repository parameter. This parameter expects a link to the Git repository which to per-

form GitOps. The name of this parameter is called repo. It is mandatory because there is

no way the program can accomplish its goal without it.

• Interval parameter. This parameter expects an integer which is the number of seconds

between executions. The name of this parameter is called interval. It is not required

because if not provided a default value of 120 seconds is used.

This is performed in the init() function, as can be seen in Section 5.1. It is executed before

anything and therefore is outside the main loop, this means it is executed just a single time.

It stores the received values into a struct of type ProgramConf with global visibility so that it

contains the program configuration and can be accessed from anywhere in the program.

type ProgramConf struct {

Repo string

Interval int

}

Listing 5.2: ProgramConf struct.

Also, parameters are received with the Go flag library and input should be in the following

form so that they can be recognized correctly: -parameter-name=parameter-value.

5.2.2 Git module

This module permits to perform the necessary operations against the given Git repository. To

cope with this, the go-git library is used, providing native Git implementation in Go. 1

1https://github.com/go-git/go-git

https://github.com/go-git/go-git

CHAPTER 5. DESING 29

When an iteration of the main loop starts, it clones the repository in a directory inside

/tmp/soup. This means that a copy of the repository is stored in there, with all its branches

and commits. Then, it retrieves all the branch names available in the remote with the function

getBranchNames, which receives the cloned repository as parameter. It returns a string array

with the names of the branches. Using that string array then it loops across the branch names

and switches to them, also called checking out. After doing so to a to a given branch calls other

modules to do the pertinent processing on it in order to accomplish GitOps.

Lastly, when the iteration finishes it removes the cloned repository to not occupy unneces-

sary space on the filesystem.

5.2.3 Build configuration processing module

In order to know what needs to be deployed and in which namespace of the cluster, in the

repository is stored a file called .soup.yml with information related to that, there is an example

of it in listing 5.3. It is written in YAML [19], a human-readable data-serialization language. It

is very simple to read and write and uses identation to indicate nesting.

namespaces:

- namespace: "production"

branch: "main"

- namespace: "staging"

branch: "develop"

- namespace: "as-branch"

branch: "features/*"

manifests:

- "deployment.yml"

- "service.yml"

Listing 5.3: .soup.yml example.

This file contains an array called namespaces that has objects with the attributes namespace

and branch, which are both strings. The namespaces array is used to know where to deploy

each branch. The .soup.yml file also contains an array of strings named manifests, which

should contain the paths of the files to deploy. This file can be different across branches but

that is not a problem because it searches for the branch the program is currently iterating on

the namespaces array. It contains an array with info of what to do on different branches because

is very impractical for this file to be different in every branch because branches merge together

30 GitOps continuous deployment and management tool for Kubernetes-based DS

frequently, so this configuration file tends to be the same across the different branches.

This module is in charge of processing it and know exactly which manifests should be

deployed and in which namespace. In order to know that two functions are used:

• getBuildConf(): This function reads the .soup.yml file and unmarshalls it to a BuildConf

struct which can be seen in listing 5.4 which returns.

• getNamespace(): Takes as parameters a BuildCon f struct and the name of the branch and

applies some logic to it to know in which namespace the manifests should be deployed.

type BuildConf struct {

Namespaces []Namespace

Manifests []string

}

Listing 5.4: BuildConf struct.

This module also contains two additional features, which provided by the getNamespace()

function:

• Branch name regular expressions: Regular expressions are accepted to match with branch

names.

• Namespace as-branch: if the namespace assigned to the current branch is as-branch it

will deploy to a namespace called in the same way as the current branch, but changing

"/" by "-" because slashes can not be in namespace names.

In the example provided in listing 5.3 the following will happen depending the branch the

program is iterating on:

• main: Will deploy the specified manifests, service.yml and deployment.yml, to the production

namespace.

• develop: Will deploy the specified manifests to the production namespace.

• features/3: Will deploy the specified manifests to the features-3 namespace because the

namespace is as-branch and matches the regular expression features/*.

• bugs/4: Will not deploy anything because it does not match any branch name.

CHAPTER 5. DESING 31

5.2.4 Deployment module

This module is in charge of interacting with the kubernetes cluster to do the deployment. It

consists in 3 functions:

• deploy(): This function ties together the deployment module. Is in charge of calling

the two functions below. Calls DeclareNamespaceSSA() a single time to ensure that the

namespace exists and then it calls DoSSA() one time per manifest to deploy. It receives as

parameters the target namespace and an array of manifests.

• DeclareNamespaceSSA(): This method creates a manifest file for declaring the names-

pace, uses the DoSSA() method to create it and then it deletes the manifest file. This is

called before invoking the DoSSA() function with other manifests to ensure that the target

namespace exists.

• DoSSA(): This is actually the core of the deployment module. It decodes a file to an

Unstructured 2 struct, provided by the Go k8s client. It allows objects that do not have

Golang structs registered to be manipulated generically. Then this is marshaled to JSON

and sent to k8s to perform SSA (Server-Side Apply)

Server-Side Apply [20] helps users and controllers manage their resources through declar-

ative configurations. Clients can create and modify their objects declaratively by sending their

fully specified intent. A fully specified intent is a partial object that only includes the fields and

values for which the user has an opinion. That intent either creates a new object or is combined,

by the server, with the existing object.

5.3 Integration

For this tool to be useful, all the different modules have to work together to pursue the same

objective. The modules are integrated as seen in Figure 5-1 to achieve this.

2https://pkg.go.dev/k8s.io/apimachinery/pkg/apis/meta/v1/unstructured

https://pkg.go.dev/k8s.io/apimachinery/pkg/apis/meta/v1/unstructured

32 GitOps continuous deployment and management tool for Kubernetes-based DS

Figure 5-1: Integration diagram.

CHAPTER 6

Validation

This chapter shows the validation side of the project. First explains the external tools used for

performing it, then the testing methology and lastly the set of tests used

6.1 External Tools

“Kubectl” is a command line tool that allows to control Kubernetes clusters, it is the only

external tool used for testing the correct functioning of the program [21]. It communicates

with the Kubernetes cluster’s API via the command line, therefore allows to install resources,

and inspect how they perform and the K8s cluster state. This tool is officially provided by

Kubernetes and widely used for developers who interact with it.

6.2 Testing Methodology

To perform the tests “Soup” was installed using the install.yml file provided in the repository

with kubectl apply. When installing “Soup” the install.yml file provides the arguments to

indicate the repository and execution interval. Then, the program is running in the cluster until

is uninstalled using kubectl delete with the same installation manifest. When the program is

running the state of the program and the resources that creates can be inspected to verify that

33

34 GitOps continuous deployment and management tool for Kubernetes-based DS

everything is working properly.

This end-to-end tests were performed since the installation manifest was ready. End-to-

end tests, also called UI tests, verify that all the components of the system work together as

expected. Also integration tests were performed in the “Git module” and “Build configuration

processing modules”. Integration tests verify that a module works as expected. This integration

tests could run outside the cluster in the developer computer because did not need to interact

with Kubernetes.

However, all this tests are manual which makes them time consuming. A further improve-

ment is to have a automated tests [22] which are faster and more reliable, and also include unit

tests. Unit tests validate functions in an isolated way and are highly recommended. Figure 6-1

shows the typical way of structuring an automated test plan among the different type of tests.

Figure 6-1: [Testing pyramid]Testing pyramid [23]

6.3 Test Performed

This sections shows all the test designed and performed to validate the system, they will be

described using the following template:

Test ID Name

Related Requirements

Description

Table 6.1: Validation test template.

CHAPTER 6. VALIDATION 35

• Test ID: Unique identifier for the test.

• Name: Name given to the test.

• Related requirements: Requirements verified by the test.

• Description: Short description of the test.

Test ID T-01 Name Repo parameter existent

Related Requirements FR-01

Description The program works as expected receiving the “repo" parameter.

Table 6.2: T-01

Test ID T-02 Name Repo parameter nonexistent

Related Requirements FR-01

Description The program fails as expected when the “repo" parameter is not

received.

Table 6.3: T-02

Test ID T-03 Name Interval parameter

Related Requirements FR-02

Description The program sleeps the number of seconds received in the “inter-

val” parameter between executions.

Table 6.4: T-03

Test ID T-04 Name Default interval parameter

Related Requirements FR-03

Description The program sleeps 120 seconds when the “interval" parameter is

not provided to the program.

Table 6.5: T-04

36 GitOps continuous deployment and management tool for Kubernetes-based DS

Test ID T-05 Name End-to-end testing

Related Requirements FR-04, FR-05, FR-06, FR-07, FR-08, FR-09, FR-10

Description The program deploys the manifests to the namespaces as expected

when using as input the testing repository1.

Table 6.6: T-05

Test ID T-06 Name Operating system

Related Requirements NFR-01

Description The program works as expected in Kubernetes running on linux

servers.

Table 6.7: T-06

Test ID T-07 Name Installation manifest

Related Requirements NFR-02

Description The install.yml manifest installs the program and grants to it the

permissions it need in a Kubernetes cluster.

Table 6.8: T-07

Test ID T-08 Name Makefile

Related Requirements NFR-03, NFR-04, NFR-05, NFR-06, NFR-07, NFR-08

Description There is a Makefile which has targets that performs the following

tasks as expected: building the program, creating the container

Docker and Podman containers, getting the dependencies, format-

ting the code.

Table 6.9: T-08

Test ID T-09 Name Log execution information shown

Related Requirements NFR-09

Description The program prints information, warnings and errors about what

happens during the execution as expected.

Table 6.10: T-09

CHAPTER 6. VALIDATION 37

Test ID T-10 Name Fatal errors shown

Related Requirements NFR-10

Description When the program crashes due to a fatal error prints information

about what happened.

Table 6.11: T-10

Test ID T-11 Name Go version

Related Requirements NFR-11

Description The program works as expected when built with Go version 1.16.

Table 6.12: T-11

Test ID T-12 Name Kubernetes version

Related Requirements NFR-12, NFR-13

Description The program works as expected running in a cluster running Ku-

bernetes version 1.20 and its API.

Table 6.13: T-12

Test ID T-13 Name Deployment functions used as library

Related Requirements NFR-14

Description The program provides the functions which interact with the K8s

API to deploy as a library and can be used in other programs suc-

cessfully.

Table 6.14: T-13

Tables 6.15 and 6.16 show the traceability between this tests and the requirements defined

in Chapter 4.

38 GitOps continuous deployment and management tool for Kubernetes-based DS

FR-01 FR-02 FR-03 FR-04 FR-05 FR-06 FR-07 FR-08 FR-09 FR-10

T-01

T-02

T-03

T-04

T-05

T-06

T-07

T-08

T-09

T-10

T-11

T-12

T-13

Table 6.15: Traceability Matrix Tests - Functional Requirements

C
H

A
PTER

6.VA
LID

A
TIO

N
39

NFR-01 NFR-02 NFR-03 NFR-04 NFR-05 NFR-06 NFR-07 NFR-08 NFR-09 NFR-10 NFR-11 NFR-12 NFR-13 NFR-14

T-01

T-02

T-03

T-04

T-05

T-06

T-07

T-08

T-09

T-10

T-11

T-12

T-13

Table 6.16: Traceability Matrix Tests - Non-Functional Requirements

CHAPTER 7

Use case

Inside this chapter, we will be showing how users can install “Soup” in Kubernetes, the contents

the GitOps repository should have as well as two repository organizations approaches, and also

two different build configuration file use cases and when to use each of them.

7.1 Installation

Most users will interact first with “Soup” in its repository as is common in Open-source

projects. There they can find the system overview diagram of Figure 3-1, how to install it

and the features it provides. Then if a development team decides to use “Soup” will proceed

to install it.

To install the program a user has to perform this tasks, which are detailed in the README.md

file of the “Soup” repository:

• Step 1. Download the installation manifest with curl a seen in Listing 7.1

• Step 2. Edit the repo parameter in the manifest with the desired repository URL.

• Step 3. Apply the contents of the manifest to the cluster with kubectl apply as seen in

Listing 7.2

41

42 GitOps continuous deployment and management tool for Kubernetes-based DS

Finally, the program will be running in the cluster performing GitOps with the given repos-

itory.

curl -O https://raw.githubusercontent.com/caldito/soup/main/manifests/install.yml

Listing 7.1: Command to download installation manifest.

kubectl apply -f install.yml

Listing 7.2: Command to apply manifest to the cluster.

7.2 Repository contents

The repository given to the program must have 2 elements:

• The .soup.yml file described in Subsection 5.2.3 to know in which namespace and which

manifests to deploy.

• Kubernetes manifests that will be deployed.

Also, this repository can contain both the code and the GitOps configuration or just the

GitOps configuration.

7.2.1 Build Configuration Files Convergence

As mentioned also in Subsection 5.2.3, the .soup.yml file tends to converge between all branches

because they merge with each other. Due to this the build configuration file will not be changed

often in most cases. Also, the best moment to set it up is in the first commits of the repository

when there is only one branch. Some future work is to be able to gather the manifests to deploy

from this file using regular expressions, as is done with the branch names. It will reduce even

more the changes needed to perform in the build configuration file.

7.2.2 Containing just GitOps configuration

This is the recommended way of doing GitOps pipelines by Weaveworks and can be seen in

Figure 7-1. The GitOps configuration is stored in a different repository as the code.

Its changes can be automated more with less effort. Makes easier to differentiate the con-

tinuous integration from the continuous deployment process. Good the cluster runs multiple

applications with different codebases. However, this can produce too many overhead that ex-

ceeds the benefits in small projects.

CHAPTER 7. USE CASE 43

Figure 7-1: Weaveworks GitOps pipeline [16].

7.2.3 Containing Code and GitOps configuration

Following this organization the code and the GitOps configuration live together in the same

repository. This approach can be better if a single application is deployed to Kubernetes or

when the distributed system code is stored in a monorepo [24]. This is not very common,

but can be done, for instance when the application is a monolith that would benefit from K8s

scalability.

7.3 Deployment approaches

7.3.1 Namespace per branch

To have a very fast feedback loop the best way is to deploy each branch to a different namespace.

In this way the infrastructure can be seen in action before merging it to develop and modifying

the staging branch. New additions in the infrastructure or version upgrades can be seen in

isolated environments. The staging environment gets new features tested in other environments

and is meant to be as close as possible to production. If everything looks good in staging the

changes can be transferred to production by merging the develop branch into main.

Listing 7.3 shows a build configuration file that allows to deploy the main, develop and

feature branches. This are the most used branches in a Gitflow branching strategy[14]. The

production namespace will be deployed after the contents in the main branch, the staging one

44 GitOps continuous deployment and management tool for Kubernetes-based DS

after the contents of develop and per feature branch a new namespace will be created.

namespaces:

- namespace: "production"

branch: "main"

- namespace: "staging"

branch: "develop"

- namespace: "as-branch"

branch: "features/*"

manifests:

- "deployment.yml"

- "service.yml"

Listing 7.3: .soup.yml file for namespace per branch.

Listing 7.4 shows a shorter .soup.yml which just deploys the given manifests in a namespace

called in the same way as the branch. It is simpler but sometimes you want to have more control

because the name of the branch differs from the namespace name.

namespaces:

- namespace: "as-branch"

branch: "*"

manifests:

- "deployment.yml"

- "service.yml"

Listing 7.4: .soup.yml file for namespace per branch shorter.

As a downside of this approach, is that “soup” does not delete the namespaces created of a

branch when it is deleted. This feature is planned as future work because is quite an important

feature for this use case. Also, it is planned to allow to choose which namespaces can and

which can be deleted, because there are some environments which should be up always like

production and staging, also called pre-production.

Another downside which not depends on “Soup” features is the cost to do this approach.

If there are a lot of existing branches the RAM and CPU requirements for the cluster is much

bigger. It also happens that developers usually forget to close their feature branches after they

are merged into develop, increasing the impact of this issue. A way to mitigate it is to delete

automatically after a certain amount of time merged feature branches.

CHAPTER 7. USE CASE 45

7.3.2 Production and staging

A more conservative approach would be to deploy only deploy only the manifests in mas-

ter and develop, each one to a different namespace. Right now “Soup” adapts really well to

this approach because these namespaces are meant to be always up. When iterating over the

main branch it will deploy to production namespace and in the develop branch to the staging

namespace, however to do this would add more complexity to the system.

Another benefit against the use case approach described in Subsection 7.3.1 is the much

cheaper cluster because only two namespaces are used.

namespaces:

- namespace: "production"

branch: "main"

- namespace: "staging"

branch: "develop"

manifests:

- "deployment.yml"

- "service.yml"

Listing 7.5: .soup.yml file only for production and staging.

CHAPTER 8

Project Plan

In this chapter we focus on the planning side of the project. First it focuses on the management

of the software development project and the methodology used. Then on a detailed breakdown

of the expenses for the costumer.

8.1 Management

This section details the management of this software development project. Explains the method-

ologies considered and the one used for the it. Then illustrates the different iterations performed

and the time consumed by each of them.

8.1.1 Methodology

To organize and plan the project an adequate software development methodology should be

used. Four different ones were analyzed [6].:

• Waterfall Model: This one is the more traditional approach on engineering. A phase

should be completed before continuing to the next one. It is less flexible than the next ones

and. A working system can only be obtained at the end, after all phases are completed,

so its feedback loop often is not sufficient.

47

48 GitOps continuous deployment and management tool for Kubernetes-based DS

• Prototype Model: Consists on building a prototype which will be evaluated and improved

in following iterations after more information is gathered after seeing users interact with

it. It aims to fasten the time to market and reduce cost.

• Incremental Model: This model divides the work into parts which can be built and tested

separately. It is good for following the customer requirements but a working system can

not be tested until the end.

• Spiral Model: This one is close to the incremental model but takes risk analysis very

seriously. Each phase is divided in four parts: Planning, Risk Analysis, Engineering and

Evaluation.

As this project focuses on building a simple yet useful tool the natural choice is the prototype

model. After developing the prototype and using it we will perform some iterations to solve

the most important problems and add valuable features. The project evolution following this

model can be seen in Figure 8-1.

8.1.2 Planning

This subsection explains the activities performed in each iteration and their extent in time.

• Iteration 1: Git and parameter reading modules. The base of the prototype will be the Git

module, the branches of the repository are checked out and iterated in a loop.

• Iteration 2: Build configuration processing module. Here, the build configuration of each

branch is obtained from the .soup.yml file. With this module ready the program knows

in which namespace to deploy and which Kubernetes manifests.

• Iteration 3: Build scripts and installation manifest. This is needed to fasten development

and be able to to perform testing inside Kubernetes.

• Iteration 4: Deployment module. Finally, the project is able to deploy the manifests to a

K8s cluster. With this iteration finished the prototype is done.

• Iteration 5: Improve installation manifest. The K8s manifests are improved to grant the

necessary permissions to the “Soup” program inside the cluster.

• Iteration 6: Improve error handling. In this last iteration, the error handling is improved

to not end the program when minor errors occur. Also some refactoring was performed

in this iteration.

CHAPTER 8. PROJECT PLAN 49

Figure 8-1: Prototype model phases.[25]

Figure 8-2 shows the different implementation phases. The red ones refer to building the

prototype, the green ones to iterating over it and the blue one is about developer usability.

Figure 8-2: Implementation phases.

50 GitOps continuous deployment and management tool for Kubernetes-based DS

The initial time estimation for completing this work was 7 months, starting on 1 January

2021 and ending on 31 July 2020. However, the project was completed in 8 months, mostly due

to some complications during the development of the deployment module. 10 hours of work

were dedicated each week, 2 hours a day each workday. Table 8.1 shows the duration of each

iteration with its start and end dates. Also, Figure 8-3 shows the initial estimation Gantt chart

and Figure 8-4 shows the final Gantt chart detailing the duration and tasks performed during

each phase.

C
H

A
PTER

8.PR
O

JEC
T

PLA
N

51

Figure 8-3: Project’s initial estimation Gantt diagram.

52
G

itO
ps

continuous
deploym

ent
and

m
anagem

ent
toolfor

K
ubernetes-based

D
S

Figure 8-4: Project’s final Gantt diagram.

CHAPTER 8. PROJECT PLAN 53

Iteration Description Duration Start Date End date

- Requirements gathering and prototype design 50 days 1/01/21 19/02/21

1 Git and parameter reading modules 24 days 20/02/21 15/03/21

2 Build configuration processing module 11 days 16/03/21 26/03/21

3 Build scripts and installation manifest 14 days 27/03/21 9/04/21

4 Deployment module 71 days 10/04/21 19/06/21

5 Improve installation manifest 11 days 20/06/21 30/06/21

6 Improve error handling 24 days 1/07/21 24/07/21

- Documentation 38 days 25/07/21 31/08/21

Table 8.1: Iteration Planning.

8.2 Budget

This section contains a detailed breakdown of the costs of the project. The different categories

are the Human Resources, Equipment, Software, Consumables and other costs. Then the total

budget is obtained, which contains also the benefits, risks and taxes.

This project has taken a total of 8 months of work, starting in January 2021 and finishing in

August of 2021. In each month there were 22 working days considered, with 2 hours each day.

The research manager contributed also with 30 hours, which makes a total of 382 days of work.

Table 8.2 shows the project’s budget summary.

Author Pablo Gómez-Caldito Gómez

Advisor Francisco Javier García Blas

Duration 8 months

Total Budget 23,884.24 e

Table 8.2: Project’s budget summary.

When calculating the costs related to the equipment and software, a 5 year amortization

period was considered. So the resulting cost for them is obtained with this formula:

Total cost =
Total Price
60 months

· 8 months (8.1)

54 GitOps continuous deployment and management tool for Kubernetes-based DS

8.2.1 Human Resources costs

This subsection details the cost in human resources. This costs are reflected in Table 8.3, show-

ing the hourly salary, hours spend and the total cost. There are two roles in this project, the

Technical Lead and the Computer Engineer, taken by the tutor and the student respectively. The

salaries are based on the 2021 Salary Guide of Spain made by Hays, a professional recruitment

agency. 1.

Human resources cost

Role Salary/hour Hours Total

Technical Lead 40.00 e 30 1,200.00 e

Computer Engineer 30.00 e 352 10,560.00 e

Total HHRR cost 11,760.00 €

Table 8.3: Human Resources costs

8.2.2 Equipment costs

This subsection details the cost in equipment during the development of project, this costs are

reflected in Table 8.4. As said earlier a 5-year amortization period was considered.

Equipment costs

Equipment Price per unit Cost per month Cost (8 months)

Personal computer 2,000.00 € 33.33 € 266.66 €

Kubernetes cluster cloud servers N/A 30.00 € 240.00 €

Printer 300.00 € 5.00 € 40.00 €

Total equipment cost 546.66 €

Table 8.4: Equipment costs.

8.2.3 Software costs

This subsection details the cost in software during the development of project, this costs are

reflected in Table 8.5. As said earlier a 5-year amortization period was considered, the same as

in equipment costs.

1https://cloud.email.hays.com/Guia-Salarial-2021-profesionales

https://cloud.email.hays.com/Guia-Salarial-2021-profesionales

CHAPTER 8. PROJECT PLAN 55

Software costs

Software License Price Cost per moth Cost (8 months)

Ubuntu 20.04 Desktop 0.00 € 0.00 € 0.00 €

LaTeX 0.00 € 0.00 € 0.00 €

Go programming language 0.00 € 0.00 € 0.00 €

Kubernetes 0.00 € 0.00 € 0.00 €

Docker Community Edition 0.00 € 0.00 € 0.00 €

Podman 0.00 € 0.00 € 0.00 €

Total software cost 0.00 €

Table 8.5: Software costs.

8.2.4 Consumables costs

This subsection details the cost in consumables during the development of project, this costs

are reflected in Table 8.6. These include office material like pens, paper sheets, post-its and

notebooks, and also the printer toner.

Consumables costs

Consumable Cost

Office material 30.00 €

Printer toner 30.00 €

Total consumables cost 60.00 €

Table 8.6: Consumable costs

8.2.5 Other costs

This subsection details the cost in consumables during the development of project, this costs

are reflected in Table 8.7. Indirect costs are the ones originated by the use of an office such as

electricity, internet or water, and represent a 20% of the human resources expenses.

56 GitOps continuous deployment and management tool for Kubernetes-based DS

Other costs

Concept Cost

Indirect costs 2,352.00 €

Total other costs 2,352.00 €

Table 8.7: Other costs.

8.2.6 Total budget

This final subsection of the budget adds together all the costs described earlier and also adds

the risks and benefits, which are a 15% and 20% of the costs respectively. Finally, it adds the

21% of taxes on top of that to obtain the resulting total budget of this project, 23,884.24 e. This

is all illustrated in Table 8.8.

Total costs

Concept Cost

Human resources 11,760.00 €

Equipment resources 546.66 €

Software resources 0.00 €

Consumable resources 60.00 €

Other costs 2,352.00 €

Total costs 14,718.66 €

Risks (15%) 2,207.80 €

Benefits (20%) 2,943.74 €

Total after risks and benefits 19,870.20 €

Taxes (21%) 3,974.04 €

Total after taxes 23,884.24 €

Total Budget 23,884.24 €

Table 8.8: Project Budget.

8.3 Socioeconomic Impact

This program is FOSS (Free and Open Source Software), this means that the program source

code is available. This results in a series of benefits:

CHAPTER 8. PROJECT PLAN 57

• Transparency: People can read the source code so they know what they are actually

running on their servers.

• Contributions: Any developer can contribute to improve the tool by submitting pull

requests with new features or bug fixes.

• Free of charge: The tool can be used for free, so can benefit anyone despite its socioeco-

nomic status.

• Eases adoption: The project can be continued by others by forking it in case the develop-

ment ceases.

Also, being open source does not mean that the tool can not be monetized. After the project

gets a significant user base we support can be sold to users who need it.

CHAPTER 9

Conclusions and Future Work

This chapter is the one which puts and end on the document. First analyzes the achievement

of the proposed objectives and then shows the future work.

9.1 Objectives Achievement

The main goal of our project was to build a tool that just does GitOps well and in a simple way,

following the Unix philosophy. The objectives established in Section 1.2 have been achieved

during the development of the project.

O1 Obtain a simple yet useful GitOps tool.

Chapter 3 gives an overview on the resulting tool and Chapter 5 provides a lot more detail

on how it works. The end result is a very simple program that enables development teams

to adopt GitOps.

O2 Tool working inside Kubernetes cluster.

The tool was designed from the start to be deployed inside Kubernetes-based clusters, and

it does it as expected. This was explained within the 3.2 in more detail.

O3 Make the project free and open-source.

59

60 GitOps continuous deployment and management tool for Kubernetes-based DS

In Subsection 4.2.1 we state the license of the tool. The tool is now available as a FOSS project

called “Soup”. Anyone can add their contributions by submitting a pull request, use for free

or make a copy of it and change it.

9.2 Future Work

This section proposes further work on this project that would be beneficial.

Outside cluster deployment option.

Give the option of deploying the “Soup” program outside a k8s cluster, in some cases it

would be better. In this case the credentials to communicate with the k8s API should be

passed to the tool, because it will not be able to get them from the cluster because runs

outside of it.

Ephemeral namespaces.

To delete the created namespaces when branches related to them are deleted. This is specially

useful when a namespace is created per branch as stated in Subsection 7.3.1

Repository authentication.

Right now it does perform any authentication to use the given repository, so only works

with repositories that do not require it. So this will be a future feature because is a painful

limitation.

Handling multiple repositories.

It would be a nice addition because some use cases would benefit from it and is not compli-

cated to implement.“Soup” could handle multiple repositories without major changes in its

structure, this change only would affect the parameter reading and git modules.

Signal handling for graceful shutdown.

Right now the application does not handle the shutdown in any particular way. This could

lead to shutting down in the middle of a deployment process. Because of this, a next feature

would be to able to handle signals to perform a graceful shutdown, in which it would wait

a bit for the deployment to complete before ending.

Regex for manifests in .soup.yml files.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 61

This is a next feature in the road map because it would make a lot more flexible the build

configuration file. Users could say that any file in a folder or that any file ending in an

specific way should be deployed.

Automated tests.

An automated tests are a must have in software projects. And specially in open-source free

software, the program should be tested automatically and in a reproducible way in order for

people to adopt “Soup” and contribute to it.

Bibliography

[1] Cisco. (Mar. 2020). “Cisco annual internet report (2018–2023) white paper,” [Online].
Available: https://kubernetes.io (visited on 09/05/2021).

[2] P. Jha and R. Khan, “A review paper on devops: Beginning and more to know,” Inter-
national Journal of Computer Applications, vol. 180, pp. 16–20, Jun. 2018. doi: 10.5120/
ijca2018917253.

[3] K. P. Contributors. (Jul. 2021). “What is kubernetes?” [Online]. Available: https : / /
kubernetes.io/docs/concepts/overview/what-is-kubernetes/ (visited on 09/05/2021).

[4] O. Laadan and J. Nieh, “Operating system virtualization: Practice and experience,” Jan.
2010. doi: 10.1145/1815695.1815717.

[5] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous integration, delivery and deployment:
A systematic review on approaches, tools, challenges and practices,” IEEE Access, vol. PP,
Mar. 2017. doi: 10.1109/ACCESS.2017.2685629.

[6] S. Kumar and P. Dubey, “Software development life cycle (sdlc) analytical comparison
and survey on traditional and agile methodology,” ABHINAV NATIONAL MONTHLY
REFEREED JOURNAL OF RESEARCH IN SCIENCE TECHNOLOGY, vol. 2, pp. 22–30,
Aug. 2013.

[7] A. A. Richardson. (Aug. 2017). “Gitops - operations by pull request,” [Online]. Available:
https://www.weave.works/blog/gitops-operations-by-pull-request (visited on
09/05/2021).

[8] E. S. Raymond, The Art of UNIX Programming. Pearson Education, 2003.

[9] Á. Kovács, “Comparison of different linux containers,” in 2017 40th International Confer-
ence on Telecommunications and Signal Processing (TSP), Jul. 2017, pp. 47–51. doi: 10.1109/
TSP.2017.8075934.

[10] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison
of virtual machines and linux containers,” 2015 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), pp. 171–172, 2015.

[11] K. P. Contributors. (Jul. 2021). “Why you need kubernetes and what it can do,” [Online].
Available: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
#why-you-need-kubernetes-and-what-can-it-do (visited on 09/05/2021).

63

https://kubernetes.io
https://doi.org/10.5120/ijca2018917253
https://doi.org/10.5120/ijca2018917253
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://doi.org/10.1145/1815695.1815717
https://doi.org/10.1109/ACCESS.2017.2685629
https://www.weave.works/blog/gitops-operations-by-pull-request
https://doi.org/10.1109/TSP.2017.8075934
https://doi.org/10.1109/TSP.2017.8075934
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#why-you-need-kubernetes-and-what-can-it-do
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#why-you-need-kubernetes-and-what-can-it-do

64
GitOps continuous deployment and management tool for Kubernetes-based

DSBIBLIOGRAPHY

[12] ——, (Aug. 2021). “Kubernetes components,” [Online]. Available: https://kubernetes.
io/docs/concepts/overview/components (visited on 09/05/2021).

[13] S. Chacon and B. Straub, Pro Git, 2nd. USA: Apress, 2014.

[14] V. Driessen. (Jan. 2010). “A successful git branching model,” [Online]. Available: https:
//nvie.com/posts/a-successful-git-branching-model (visited on 09/05/2021).

[15] Weaveworks. (Aug. 2018). “What is gitops,” [Online]. Available: https://www.weave.
works/blog/what-is-gitops-really (visited on 09/05/2021).

[16] ——, (Jan. 2010). “Guide to gitops,” [Online]. Available: https://www.weave.works/
technologies/gitops (visited on 09/05/2021).

[17] A. I. Dmitrichenko. (Jul. 2018). “Kubernetes anti-patterns: Let’s do gitops, not ciops!”
[Online]. Available: https://www.weave.works/blog/kubernetes-anti-patterns-let-
s-do-gitops-not-ciops (visited on 09/05/2021).

[18] A. S. Foundation. (2004). “Apache license, version 2.0,” [Online]. Available: https://www.
apache.org/licenses/LICENSE-2.0.html (visited on 09/06/2021).

[19] C. E. Oren Ben-Kiki and I. döt Net. (Oct. 2009). “Yaml ain’t markup language (yaml™)
version 1.2,” [Online]. Available: https://yaml.org/spec/1.2/ (visited on 09/05/2021).

[20] K. P. Contributors. (Aug. 2021). “Server-side apply,” [Online]. Available: https://kubernetes.
io/docs/reference/using-api/server-side-apply (visited on 09/05/2021).

[21] ——, (Jun. 2021). “Overview of kubectl,” [Online]. Available: https://kubernetes.io/
docs/reference/kubectl/overview/ (visited on 09/05/2021).

[22] P. Mahajan, H. Shedge, and U. Patkar, “Automation testing in software organization,”
International Journal of Computer Applications Technology and Research, vol. 5, pp. 198–201,
Apr. 2016. doi: 10.7753/IJCATR0504.1004.

[23] M. D. Bono. (Apr. 2020). “Agile, unit testing and quality,” [Online]. Available: https:
//marcellodelbono.it/agile-unit-testing/ (visited on 09/05/2021).

[24] T. Fernández. (Mar. 2021). “What is monorepo? (and should you use it?)” [Online]. Avail-
able: https://semaphoreci.com/blog/what-is-monorepo (visited on 09/05/2021).

[25] S. K. Pal. (Apr. 2018). “Software engineering | phases of prototyping model | set – 2,”
[Online]. Available: https://www.geeksforgeeks.org/software-engineering-phases-
prototyping-model-set-2/ (visited on 09/05/2021).

https://kubernetes.io/docs/concepts/overview/components
https://kubernetes.io/docs/concepts/overview/components
https://nvie.com/posts/a-successful-git-branching-model
https://nvie.com/posts/a-successful-git-branching-model
https://www.weave.works/blog/what-is-gitops-really
https://www.weave.works/blog/what-is-gitops-really
https://www.weave.works/technologies/gitops
https://www.weave.works/technologies/gitops
https://www.weave.works/blog/kubernetes-anti-patterns-let-s-do-gitops-not-ciops
https://www.weave.works/blog/kubernetes-anti-patterns-let-s-do-gitops-not-ciops
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/LICENSE-2.0.html
https://yaml.org/spec/1.2/
https://kubernetes.io/docs/reference/using-api/server-side-apply
https://kubernetes.io/docs/reference/using-api/server-side-apply
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://doi.org/10.7753/IJCATR0504.1004
https://marcellodelbono.it/agile-unit-testing/
https://marcellodelbono.it/agile-unit-testing/
https://semaphoreci.com/blog/what-is-monorepo
https://www.geeksforgeeks.org/software-engineering-phases-prototyping-model-set-2/
https://www.geeksforgeeks.org/software-engineering-phases-prototyping-model-set-2/

	Agradecimientos
	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Document's Structure

	State of the Art
	OS-level virtualization and containers
	Containers

	Kubernetes
	Git
	Continuous deployment, GitOps and the DevOps philosophy
	Continuous deployment
	GitOps
	DevOps philosophy

	System Overview
	Background
	Description

	Analysis
	Requirement Analysis
	Functional Requirements
	Non-functional Requirements

	Licenses
	Tool license
	Licenses of used projects

	Design
	Daemon process
	Module Description
	Parameter reading module
	Git module
	Build configuration processing module
	Deployment module

	Integration

	Validation
	External Tools
	Testing Methodology
	Test Performed

	Use case
	Installation
	Repository contents
	Build Configuration Files Convergence
	Containing just GitOps configuration
	Containing Code and GitOps configuration

	Deployment approaches
	Namespace per branch
	Production and staging

	Project Plan
	Management
	Methodology
	Planning

	Budget
	Human Resources costs
	Equipment costs
	Software costs
	Consumables costs
	Other costs
	Total budget

	Socioeconomic Impact

	Conclusions and Future Work
	Objectives Achievement
	Future Work

	Bibliography

